

ASEE Introduction to Abaqus Workshop

What we will cover today

- What is Finite Element Analysis
- What can we use Finite Element Analysis for
- Overview of how to navigate Abaqus
- Overview of the basic procedure for performing Finite Element Analysis
- Specific instructions for performing static structural analysis

What is the Finite Element Method?

The finite element method (FEM) is a numerical technique for finding approximate solutions to boundary value problems for partial differential equations. FEM subdivides a large problem into smaller, simpler, parts, called finite elements. The simple equations that model these finite elements are then assembled into a larger system of equations that models the entire problem. FEM then uses variational methods from the calculus of variations to approximate a solution by minimizing an associated error function.

Definitions

Elements: smaller simpler parts in with equations are solved over Nodes: corners of the elements Mesh: pattern in which you subdivide your problem into

Modal Analysis What can you do with FEA?

Element Types

Simplifying Models

Simplifying Models

Meshes

Detailed Procedure

- Part: Create the Part
- Property
 - Create the Materials
 - Create the Section
 - Assign the Section to the Part
- Assembly: Create the Assembly
- Step: Define the Analysis Type
- Interaction: Define how different parts interact within an assembly (if there is only one part this will be skipped)
- Load
 - Define Loads
 - Define Boundary Conditions
- Mesh: Create the Mesh
- Job: Run the analysis
- Visualization: View the results

Part Property Assembly Step Interaction l oad Mesh. Optimization Job Visualization

Units in Abaqus

Abaqus does not have units, therefore you must use consistent units

Quantity	SI	SI (mm)	US Unit (ft)	US Unit (inch)
Length	m	mm	ft	in
Force	N	Ν	lbf	lbf
Mass	kg	tonne (10^3 kg)	slug	lbf s²/in
Time	s	S	S	S
Stress	Pa (N/m ²)	MPa (N/mm ²)	lbf/ft ²	psi (lbf/in ²)
Energy	J	mJ (10 ⁻³ J)	ft lbf	in lbf
Density	kg/m ³	tonne/mm ³	slug/ft ³	lbf s ² /in ⁴

Other Abaqus Tips

- Files
 - .CAE is a file that contains everything needed to run the analysis
 - .ODB is the file created while the analysis is being run and contains the results of the simulation
- View the part
 - Ctrl + Alt + Left Button: Rotate Part
 - Ctrl + Alt + Center/Scroll Button: Translate Part

Example #1

References

Slide 3

https://en.wikipedia.org/wiki/Finite element method

https://www.comsol.com/multiphysics/fea-software

Slide 4

http://www.creocommunity.com/print_article.php?cpfeatureid=8763

http://www.cerom.lsu.edu/serhan.htm

http://www.mdpi.com/1424-8220/14/9/17174/htm

https://www.simuleon.com/simulia-abaqus/abaqus-explicit/

http://www.iitrpr.ac.in/sites/default/files/navin_web/gallery.html

Slide 5

http://illustrations.marin.ntnu.no/structures/analysis/FEM/theory/index.html

Slide 6

http://article.sapub.org/10.5923.j.mechanics.20130305.02.html

http://what-when-how.com/the-finite-element-method/using-abaqus-finite-element-method-part-1/

Slide 7

http://solidmechanics.org/Text/Chapter7_1/Chapter7_1.php

http://plmsource.industrysoftware.automation.siemens.com/blog/2013/03/plysim-automates-composite-fe-modelingreduces-design-time/

Slide 8

http://www.egr.msu.edu/software/abaqus/Documentation/docs/v6.7/books/gsa/default.htm?startat=ch04s04.html Slide 9

http://www.egr.msu.edu/software/abaqus/Documentation/docs/v6.7/books/gsa/default.htm?startat=ch04s04.html http://confluence.diamond.ac.uk/display/EDG/Design+of+flexural+hinges

Slide 12

https://www.researchgate.net/post/can_someone_help_me_with_on_Abaqus_CAE_data_and_measurement_units